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Abstract

The buckling behavior of multilayer shells is studied for composite structures subjected to combinations of uniform

temperature change, applied external pressure, and applied and reactive circumferential edge loads. A stability criterion

is established for the class of structures of interest and a transverse loading parameter is identified. Critical parameters

are identified, and closed form analytical solutions are obtained for the associated non-linear problems. Numerical

simulations, based on these solutions, are performed and the stability criterion is applied, revealing characteristic be-

havior of the structures of interest. Such behavior includes ‘‘sling-shot’’ buckling, whereby the structure slings from

deflections in one direction to deflections in the opposite sense, in an unstable manner, at critical temperatures. The

influence of external pressure on the critical temperature change of thermally loaded composite structures is elucidated,

as is the influence of temperature change on the buckling behavior of pressure loaded multilayer shells.

� 2002 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Layered structures can be found in an extensive array of applications ranging from laminated structures
in aircraft to thin film deposition in semiconductor devices. Such structures are subjected to a variety of
loading types and often to severe temperature changes. As the layers comprising such structures generally
possess disparate thermal expansion coefficients, such temperature changes can introduce additional
stresses and moments which often lead to interesting and unexpected behavior.

Studies pertaining to thermally induced buckling of layered structures have been reported in the liter-
ature and include the classic papers of Timoshenko (1925), Wahl (1944), Wittrick (1953) and Wittrick et al.
(1953). The former two studies were concerned with the response of bilayer strips while the latter two were
concerned with the response of a shallow bilayer spherical cap modeled as a circular plate with initial
deflection. Critical temperatures were assumed to correspond to limit points of a temperature-deflection
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curve, and classic snap-through was assumed to follow. Likewise, Chen and Chen (1990) and Noor and
Burton (1992) studied thermal buckling of composite cylinders subjected to non-uniform temperature fields
and predicted snap-through buckling at critical temperatures. Huang and Tauchert (1991) studied buckling
of cylindrical shells due to uniform thermal loading, via finite element analysis. Other related studies in-
clude Boley and Weiner (1960), Brevik and Hyer (1998), Gauss and Antman (1984), Hamamoto and Hyer
(1987), Huang and Tauchert (1988), Librescu and Souza (1993), Mahayni (1966), Muller de Almeida and
Hansen (1997), Noor and Peters (1992a,b), Noor et al. (1993), Tauchert (1991) and Yin (1998). A more
detailed discussion can be found in (Karlsson and Bottega, 2000a).

Recent work of Rutgerson and Bottega (submitted for publication) concerning buckling of layered shell
segments subjected to external pressure includes a formal stability analysis of the equilibrium configura-
tions of the deforming structure and shows that snap-through buckling occurs below, and often well below,
the limit load of the load-deflection curve. Critical behavior was seen to be associated with the crossing of
branches of the roots of an integrability condition associated with the circumferential displacements. Re-
cent work of Karlsson and Bottega (2000a,b,c) pertaining to thermal buckling of patched plates demon-
strated ‘‘sling-shot buckling’’, whereby the sense of the deformation switches and slings in an unstable
manner at a critical temperature not associated with a limit point. The present work expands on these
concepts, and those introduced by Rutgerson (2001), and Bottega and Rutgerson (2001), to examine the
buckling behavior of multilayer shell segments subjected to uniform temperature, and a combination of
uniform temperature and external pressure, as well as both reactive and active circumferential edge loads.
In doing so, the phenomena of ‘‘sling-shot buckling’’ and ‘‘pre-limit point snap-through’’ will be further
elucidated as will the understanding of the behavior of composite shell segments under the load types
considered.

In the present study, we consider the thermo-elastic behavior of shallow multilayer shell segments in
plane strain and plane stress configurations where each of the layers may possess different material,
thicknesses and thermal properties. The problem is expressed in a mixed formulation in terms of the
transverse (radial) displacements and the resultant membrane force of the composite structure. A loading
parameter is identified consisting of a combination of the normalized pressure and thermal moment. A
stability criterion, based on the second variation of the total potential energy of the system is derived in
terms of small perturbations away from equilibrium configurations of interest, for situations where multiple
equilibrium configurations are possible for a given value of the loading parameter. Closed form analytical
solutions are obtained for the associated non-linear problem, and the corresponding membrane force is
evaluated numerically as roots of a transcendental equation resulting from an integrability condition as-
sociated with the circumferential displacements. Extensive results of numerical simulations based on the
aforementioned analytical solutions are presented and characteristic behavior is revealed for the cases of
clamped-free, pinned-free, clamped-fixed and pinned-fixed support conditions. For the former two support
types, where the edges of the structure are free to translate in the circumferential direction, we consider the
structure to be subjected to an applied circumferential edge load together with external pressure and
uniform temperature change. For the latter two cases, where the structure is fixed with regard to cir-
cumferential translation, we consider two loading scenarios: (i) where the structure is subjected to a uniform
temperature change alone, and (ii) where the structure is subjected to both a uniform pressure over its
external convex surface and to uniform temperature changes. It is seen that the overall behavior and, in
particular, the buckling of the composite shell is influenced by a ratio of two of the composite mechanical
stiffnesses and to a ratio of composite thermal stiffness properties, and that the behavior is characterized by
a critical value of the normalized loading parameter and by a critical value of the normalized membrane
force, the latter of which is seen to be independent of the particular material properties of the system.
Bifurcation buckling, asymptotic buckling and sling-shot buckling are all seen to occur under appropriate
circumstances. It is also seen that pre-limit buckling exhibited for pressure loaded structures in (Rutgerson
and Bottega, submitted for publication) is further enhanced by the effects of temperature.

4868 S.E. Rutgerson, W.J. Bottega / International Journal of Solids and Structures 39 (2002) 4867–4887



2. Problem statement

Consider a shell structure comprised of multiple cylindrical layers, numbered 1 through C, which are
bonded over their common interfaces. Each layer is characterized by its normalized (see Appendices A and
C) Young’s modulus and coefficient of thermal expansion, Ei and ai respectively, the associated Poisson’s
ratio, mi, and the corresponding normalized thickness, hi � 1 (i ¼ 1; 2; . . . ;C). In what follows, all length
scales are normalized with respect to the undeformed radius of the ‘‘reference surface’’. This surface may be
taken, for example, as the geometric center of the cross section, the neutral surface, or a convenient in-
terface. In this context, the structure is described by the angular coordinate h, measured clockwise from the
center of the span, and the structure is defined over the region �/�

6 h6/�, as indicated in Fig. 1. The
structure is subjected to a uniform normalized radial pressure, p̂p (see Appendix D), acting on the convex
surface of the outermost layer (i ¼ C), and to a uniform normalized temperature change, eHH, which man-
ifests itself as a normalized distributed thermal moment, bHH. The natural temperature scale and corre-
sponding normalization may be found in Appendix A. The kinematic relations which define the composite
shell as an assemblage of C shallow shells, and the governing equations and boundary conditions, as well as
the constitutive relations of the composite structure, are obtained by paralleling the variational develop-
ment of Bottega (1994) 2 and Bottega and Karlsson (1999), and incorporating the thermally induced strains
as in (Karlsson and Bottega, 2000a). The pertinent kinematic relations are given in Appendix B, the
constitutive relations obtained for the composite structure are given in Appendix C, and the resulting
governing equations for the mixed formulation are given by

w0000 þ ð2þ bNN Þw00 þ w ¼ p̂p þ bHH � ð1� q�ÞbNN ; ð1aÞ

bNN 0 ¼ 0; ð1bÞ

Fig. 1. Multilayer shell structure subjected to applied pressure, temperature change, and circumferential edge load: (a) pinned-free

supports, (b) clamped-free supports, (c) pinned-fixed supports, (d) clamped-fixed supports.

2 For the present study, the intact region of (Bottega, 1994), or the intact patched region of (Bottega and Karlsson, 1999) is taken to

envelop the entire structure.
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where superposed primes indicate total differentiation with respect to h, wðhÞ is the normalized radial de-
flection (positive inward), and bNN is the normalized (compressive) membrane force as defined in Appendix
D. The non-dimensional parameter q� (�1) is a material property (see Appendix C) and locates the
centroid of the composite structure with respect to the reference surface. In addition, u�ðhÞ represents the
circumferential displacement at the reference surface (positive in the direction of increasing h) and ûuðhÞ
represents the analogous displacement at the neutral surface of the composite structure. The two are related
through Eq. (B.2). Further, for cases for which the edges of the structure are free to translate circumfer-
entially (clamped-free or pinned-free supports), we consider the structure to be loaded by the normalized
(compressive) circumferential edge load, bNN/, as well.

The associated boundary conditions corresponding to symmetric solutions with respect to h are given by

ûuð0Þ ¼ 0; w0ð0Þ ¼ 0; w000
h

þ ð1þ bNN Þw0
i

h¼0
¼ 0; ð2a–cÞ

wð/�Þ ¼ 0; ð3aÞ

and, depending on the type of supports,

ûuð/�Þ ¼ 0 ðedges fixed with regard to circumferential translationÞ ð3b1Þ

or bNN ð/�Þ ¼ bNN/ ðbNN/ prescribed; edges free to translate circumferentiallyÞ; ð3b2Þ

and either

w0ð/�Þ ¼ 0 ðclamped supportsÞ or w00�
þ w

�
h¼/� ¼ 0 ðpinned supportsÞ: ð3c1; c2Þ

Integration of the constitutive relation (C.1a) over ½0;/�
 gives the integrability condition

ûuð/�Þ � ûuð0Þ ¼ /�

C�=D�
n�

m�
bHH�
� bNN�

þ ð1� q�Þ
Z /�

0

wdh � 1

2

Z /�

0

w02 dh: ð4Þ

In the above expressions, C� and D� are mechanical stiffnesses of the composite structure, q� is a ratio of
composite stiffnesses and locates the mechanical centroid of the cross section with respect to the reference
surface, the parameter n� is a membrane force per unit temperature change of the composite structure and
m� is a bending moment per unit temperature change (see Appendix C).

3. Stability criterion

When the supports are such that circumferential translation at the edges of the structure are prohibited
(clamped-fixed and pinned-fixed supports), multiple equilibrium configurations are generally possible for a
given value of the loading parameter, k̂k. In such situations, we must determine which of the possible
configurations the structure will tend toward (i.e., which configuration is stable). We shall accomplish this
by introducing small perturbations to the deformation corresponding to a given equilibrium configuration,
and then examining the second variation of the total potential energy of the system, as in (Bottega and
Rutgerson, 2001; Rutgerson and Bottega, submitted for publication). If the second variation of the total
potential energy for a given configuration is positive definite, the equilibrium configuration will be said to
be stable. If it is not, the equilibrium configuration will be considered unstable. Toward this end, we shall
perturb the transverse displacement, w, and hence the curvature change j (as given by Eq. (B.1b)), and also
the membrane strain e�.
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It may be anticipated that the solutions to Eqs. (1a,b), for the radial deflection corresponding to a given
equilibrium configuration, will be of the general form

wðhÞ ¼ bQQW ðh; bNNeqÞ; ð5Þ

where bNNeq represents the particular value of the membrane force at the equilibrium configuration in
question. The perturbation of the transverse displacement will thus be implemented by perturbing the
amplitude bQQ. The perturbation of the membrane strain is accomplished by incorporating the perturbation
of the radial displacement into Eq. (C.1a) and perturbing the (reactive) membrane force. (Recall that, in
this section, we are considering situations where the edges of the structure are fixed with regard to cir-
cumferential translation.) Thus, for the present formulation, the perturbation of the membrane strain is
introduced through an equivalent perturbation of the membrane force. Expanding the transverse dis-
placement and the membrane force about their respective equilibrium values, weq and bNNeq, we have

w ¼ weq þ W dbQQ and bNN ¼ bNNeq þ dbNN ; ð6a; bÞ

where dbQQ and dbNN are arbitrary. Substitution of the expressions (6a,b) into the total potential energy, P,
and retaining terms of second order gives the second variation of the total potential energy, d2P, in the
form

d2P ¼ /�

2C� ðdbNN Þ2 þ bNNeqF �ðdbQQÞ2: ð7Þ

The parameter F �, appearing in Eq. (7), will be referred to as the ‘‘stability function’’ and is given by

F � ¼ F �ðbNNeqÞ �
Z /�

0

D�

2bNNeq

W 00ðh; bNNeqÞ
h

þ W ðh; bNNeqÞ
i2
dh � 1

2

Z /�

0

W 02ðh; bNNeqÞdh: ð8Þ

As dbQQ and dbNN are arbitrary and bNNeq > 0, it is evident that the right hand side of Eq. (7) will be positive
definite if the associated coefficients are positive. This leads to the following stability criterion:

An equilibrium configuration is stable if F � > 0: It is unstable otherwise: ð9Þ

4. Analytical solution

Eqs. (1a,b) together with the boundary conditions (2a–c) and (3a–c) are solved analytically giving so-
lutions of the form

wðhÞ ¼ bQQW ðh; bNN Þ ¼ bQQ Gðh; bNN Þ
F0ð/�; bNN Þ

"
þ 1

#
; ð10Þ

where,bQQ ¼ k̂k � ð1� q�ÞbNN � k̂k � bNN ; ð11Þ

and

k̂k ¼ p̂p þ bHH: ð12Þ

The parameter k̂k, which is seen to be comprised of the applied pressure and a thermal moment per unit
length, may be identified as the ‘‘loading parameter’’ for the class of problems for which the supports are
fixed with regard to circumferential translation and can be viewed as an effective pressure. The specific
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forms of the functions G and F0 appearing in Eq. (10) depend upon the rotational constraints of the
supports as follows:

clamped supports:

G ¼ Gc � a2 sinða/�Þ cosðh=aÞ � sinð/�=aÞ cosðahÞ; ð13aÞ

F0 ¼ F0c � cosða/�Þ sinð/�=aÞ � sinða/�Þ cosð/�=aÞ; ð13bÞ
pinned supports:

G ¼ Gp � cosð/�=aÞ cosðahÞ � a4 cosða/�Þ cosðh=aÞ; ð14aÞ

F0 ¼ F0p � ða4 � 1Þ cosða/�Þ cosð/�=aÞ; ð14bÞ
where the parameter a, appearing in Eqs. (13a,b) and (14a,b), is given by

a ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2þ bNN Þ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffibNN ð4þ bNN Þ
q
2

vuut
: ð15Þ

In problems for which the edges of the structures are free to translate, the membrane force is prescribed
through the boundary condition (3b2) and Eq. (1b). Substitution of the above solution into Eq. (4) then
gives the associated circumferential edge deflection, ûuð/�Þ. In problems for which the edges of the structure
prohibit circumferential translation, the values of the membrane force corresponding to equilibrium con-
figurations of the composite structure may be found by substituting the appropriate solution described
above, by Eqs. (10)–(12) and either (13a,b) or (14a,b), into the integrability condition (4) subjected to the
boundary conditions (2a) and (3b1), and solving the resulting transcendental equation numerically for bNN as
a function of k̂k. Each ðbNN ; k̂kÞ pair may then be substituted back into Eq. (10), using Eqs. (11)–(15), to obtain
the associated radial deflection, wðhÞ. As multiple roots, and hence multiple equilibrium configurations, are
possible for a given value of the loading parameter for this case, an assessment of the stability of the various
equilibrium configurations is warranted. This is accomplished by substituting the displacement functions
corresponding to the equilibrium configurations of interest into Eq. (8) and applying the stability criterion
(9).

5. Critical parameters

It will be seen that there are two critical parameters, a critical membrane force and a critical loading
parameter, that distinguish the behavior of the structures of interest. Upon examination of Eq. (10), it may
be seen that the expression for the radial deflection becomes singular when F0 vanishes, and when bQQ and F0
vanish simultaneously. It will be seen that these conditions are associated with critical behavior of the
structure. As both F0c and F0s are seen to be functions solely of the membrane force and the half-length, it is
seen that the roots of this condition yield critical values of the membrane force for given /�. Hence,

F0ðbNN ;/�Þ ¼ 0 ) bNNcr; ð16Þ
where F0 is given by Eq. (13b) or (14b) depending upon the support condition, and bNNcr corresponds to the
lowest roots of Eq. (16) and is designated as ‘‘the critical membrane force’’. Likewise, it is seen from Eqs.
(11), (12), (13b) and (14b), that simultaneous vanishing of bQQ and F0 yield specific values of the loading
parameter associated with bNNcr. Such critical values of the loading parameter are designated as k̂kcr. Hence,

F0 ¼ 0 and bQQ ¼ 0 ) k̂kcr ¼ ð1� q�ÞbNNcr � bNNcr: ð17Þ
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With the exception of the half-length of the span, the critical membrane force is seen to be independent of
the material and geometric properties of the structure. This is seen to be, effectively, the case for the ‘‘critical
loading parameter’’ as well.

6. Results and discussion

In this section, results are presented for clamped and pinned edge conditions. In each case, three loading
scenarios will be examined. In the first scenario, the ends of the structure are free to move circumferentially
(clamped-free and pinned-free supports) while the shell is subjected to prescribed circumferential edge
loading and given values of the loading parameter. In the second and third loading scenarios, the edges of
the structure are fixed so as to prohibit circumferential translation (clamped-fixed and pinned-fixed sup-
ports). For the second scenario, we consider pure thermal loading, while for the third we consider the effects
of temperature change on pressure loaded shells and vice-versa. For the latter two cases, the membrane
force is found numerically, as roots of the explicit form of the integrability condition (4) for given values of
the loading parameter. The method employed is a hybrid between an incremental step based root finding
method and the bisection technique. Stability is assessed using the criterion of Section 3.

The renormalized critical membrane force, bNNcr, as defined by Eq. (16), together with the critical loading
parameter, k̂kcr, is central to critical behavior pertaining to all of the aforementioned loading scenarios. The
dependence of the former on the normalized half-span length, /�, is displayed in Fig. 2(a) and (b) for the
cases of clamped supports and pinned supports, respectively.

Before proceeding, we first identify the ‘‘characteristic deflections’’ for the system as the circumferential
edge deflection and the transverse centerspan deflection, respectively denoted as

U/ � ûuð/�Þ and w0 � wð0Þ: ð18a; bÞ

6.1. Prescribed circumferential edge loading

In this section we consider the edges of the structure to be free to translate circumferentially, while the
structure is subjected to an applied (compressive) circumferential edge load and is simultaneously subjected
to an applied pressure and a uniform temperature. We consider both clamped-free and pinned-free supports
and present results for the former first.

Fig. 2. Critical membrane force parameter as a function of half-span length: (a) clamped supports, (b) pinned supports.
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Results for the case of a structure possessing clamped-free supports and subjected to an applied cir-
cumferential edge load, are displayed in the form of load-deflection curves in Figs. 3 and 4, for a repre-
sentative structure of half-span /� ¼ 0:4 The corresponding normalized membrane force is displayed as a
function of the transverse centerspan deflection, w0, for various values of the loading parameter, k̂k, in Fig. 3.
Upon examination of that figure it may be seen that when the loading parameter is at its critical value the
transverse deflection remains essentially fixed as the circumferential edge load is increased, until the
membrane force achieves its critical value. At this point bifurcation buckling (in either direction) is indi-
cated, and the deflection increases without bound, in the context of the mathematical model employed. In
this sense, when preloaded with the load parameter at its critical value, the shell structure behaves in a
manner similar to that of a flat plate subjected to in-plane edge loading. It may be seen from the figure that
for all other values of the loading parameter, the load-deflection paths approach the critical load path
asymptotically. We refer to this type of behavior as asymptotic buckling. The shell structure thus behaves as
an edge loaded flat plate with an initial imperfection. It is important to note that the sense in which the
structure deflects depends on whether the pre-load, k̂k, is less than or greater than k̂kcr. Corresponding paths

Fig. 3. Membrane force parameter versus transverse centerspan deflection for various values of the (transverse) loading parameter for a

structure with clamped-free supports (/� ¼ 0:4).

Fig. 4. Membrane force parameter versus circumferential edge deflection for various values of the applied pressure, with vanishing

temperature change. Clamped-free supports (/� ¼ 0:4, C�=D� ¼ 2� 106).
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of the membrane force versus the circumferential edge deflection, U/, are displayed for various values of the
loading parameter in Fig. 4, for a structure of the same span length and the specific stiffness ratio
C�=D� ¼ 2� 106, for the case of applied pressure and vanishing temperature change. Plots of the membrane
force as a function of the transverse centerspan deflection for various span lengths are compared in Fig. 5,
for k̂k ¼ 50. It is seen that structures of greater span length have a larger initial deflection due to the load
parameter, and lower global stiffness, as would be expected. Parallel results for structures possessing the
same material and geometric properties, but having pinned-free supports, are presented in Figs. 6–8 and
show similar behavior.

6.2. Thermal loading

We next consider the behavior of multilayer shell segments which are fixed with regard to circumferential
translation, and are subjected to a prescribed uniform temperature change only (p̂p ¼ 0). Sample results are
presented for the representative structures possessing the properties /� ¼ 0:4, C�=D� ¼ 2� 106 and

Fig. 5. Membrane force parameter versus transverse centerspan deflection for various (half) span lengths. Clamped-free supports

(k̂k ¼ 50).

Fig. 6. Membrane force parameter versus transverse centerspan deflection for various values of the (transverse) loading parameter.

Pinned-free supports (/� ¼ 0:4).
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n�=m� ¼ 1� 103, for both clamped-fixed and pinned-fixed support conditions. Plots of the roots of the
integrability condition as a function of the prescribed normalized temperature change, for the case of
clamped-fixed supports, are displayed in Fig. 9. It may be seen that multiple roots, and hence multiple
equilibrium configurations, exist for a large range of values of the prescribed temperature change. In this
regard, four branches of roots are identified in the figure, associated with the first four roots as they are
encountered upon initial loading. 3 In that figure, point ‘A’ labels the point at which branches one and two
cross. Thus, at this point, two equilibrium configurations exist for the same values of the temperature and
membrane force. It may be noted that this point corresponds to bNN ¼ bNNcr and k̂k ¼ k̂kcr $ bHH ¼ bHHcr (p̂p ¼ 0)
defined by Eq. (17). It will be seen that this value of the thermal moment is associated with critical behavior
of the structure. The corresponding plots of the stability function, F �, are displayed in Fig. 10, and the

Fig. 7. Membrane force parameter versus circumferential edge deflection for various values of the applied pressure, with vanishing

temperature change. Pinned-free supports (/� ¼ 0:4, C�=D� ¼ 2� 106).

Fig. 8. Membrane force parameter versus transverse centerspan deflection for various (half) span lengths. Pinned-free supports

(k̂k ¼ 50).

3 It may be seen from Eq. (A.1), that the thermal moment, bHH, increasing may imply either heating or cooling depending upon the

sign of the material property m�, as defined in Appendix C, for the particular structure of interest.
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associated load-deflection paths expressed in the form of normalized temperature change (thermal mo-
ment), bHH, versus normalized centerspan deflection, w0, are displayed in Fig. 11. In each figure, the point(s)
corresponding to the branch crossing in Fig. 9 is (are) labeled ‘A’. As multiple equilibrium configurations
exist for a given value of the thermal moment, we must assess which configurations are stable and which are
not. Consideration of Fig. 10, together with the stability criterion established in Section 3, shows that the
equilibrium configurations associated with the first branch of Fig. 9 are stable upon initial temperature
change but become unstable when the level indicated by point ‘A’ is achieved. It may also be seen that the
configurations associated with branch 2 are initially unstable, but become stable after the temperature
change achieves the level indicated at point ‘A’. 4 With this established, consideration of Fig. 11 shows that
the structure initially deflects outward for increasing bHH until bHH ¼ bHHcr (point ‘A’) at which point the
structure ‘‘sling-shots’’ to a deflection in the opposite sense (i.e., inward), as indicated. We refer to this
phenomenon as ‘‘sling-shot buckling’’ (Karlsson and Bottega, 2000a,c). 5 Further increases in the thermal

Fig. 9. Roots of integrability condition versus thermal moment. Clamped-fixed supports (/� ¼ 0:4, C�=D� ¼ 2� 106, n�=m� ¼ 1� 103).

Fig. 10. Stability function versus membrane force parameter. Clamped-fixed supports (/� ¼ 0:4, C�=D� ¼ 2� 106, n�=m� ¼ 1� 103).

4 Branches 3 and 4 actually lie slightly below F � ¼ 0, indicating that the associated equilibrium configurations are unstable, but are

seen to become positive for large values of the temperature change.
5 The phenomenon of sling-shot buckling was seen and named by Karlsson and Bottega (2000a,c) for patched structures under

thermal loading. The mechanisms involved for that class of structures were similar to those of the present case.
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moment cause the structure to further deflect inwardly, as indicated. For the class of structures considered
in the present study, this behavior is attributed to the fact that during the pre-buckling phase the amplitude

of the deflection, bQQ, is dominated by the membrane force bNN , and hence the dominant motion is due to the
overall thermal expansion of the structure. Once the critical temperature change is achieved, bQQ is domi-
nated by the thermal moment, bHH, and thus the dominant motion is due to bending of the composite
structure resulting from the disparity in thermal properties of the constituent layers. Parallel results for
structures possessing the same material and geometric properties, but having pinned-free supports, are
presented in Figs. 12–14 and show similar behavior.

6.3. Combined thermal and pressure loading

We next consider the influence of temperature change on the buckling behavior of pressure loaded
layered panels, and vice-versa. It was shown recently by Rutgerson and Bottega (submitted for publication)
for panels subjected to pressure loading alone, that snap-through buckling generally occurs well below the
limit-load. We here examine how temperature change influences the behavior of pressure loaded shell

Fig. 11. Thermal moment versus centerspan deflection. Clamped-fixed supports (/� ¼ 0:4, C�=D� ¼ 2� 106, n�=m� ¼ 1� 103).

Fig. 12. Roots of integrability condition versus thermal moment. Pinned-fixed supports (/� ¼ 0:4, C�=D� ¼ 2� 106, n�=m� ¼ 1� 103).
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segments overall, and how it influences critical behavior in particular. Sample results are presented for
representative structures possessing the properties /� ¼ 0:4, C�=D� ¼ 2� 106 and n�=m� ¼ 1� 103, for both
clamped-fixed and pinned-fixed support conditions.

Plots of the roots of the integrability condition (4) as a function of the normalized applied pressure, p̂p, for
various values of the renormalized temperature change (normalized thermal moment), bHH, are displayed in
Fig. 15 for the case of clamped-fixed supports. Branches corresponding to the first three roots of Eq. (4) are
shown, and we again observe crossing of the first two branches as was seen for the case of thermal loading
alone in Section 6.2, and for the case of pressure loading alone in (Rutgerson and Bottega, submitted for
publication). In the figure, the branch crossing for each case is labeled ‘A’, and is associated with the critical
value of the membrane force and the critical value of the loading parameter, as defined in Section 5. We
define the corresponding value of the pressure at this point as the critical pressure, p̂pcr. A stability analysis
using the criterion of Section 3 shows that the equilibrium configurations associated with the first branch
are stable for pressures below this point and are unstable for pressures above this point. The reverse is
found for the configurations associated with the second branch. The association of critical behavior with
the crossing of the first two branches of the roots of the integrability condition was also seen for the
thermally loaded structures considered in Section 6.2 and for the pressure loaded structures considered in

Fig. 13. Stability function versus membrane force parameter. Pinned-fixed supports (/� ¼ 0:4, C�=D� ¼ 2� 106, n�=m� ¼ 1� 103).

Fig. 14. Thermal moment versus centerspan deflection. Pinned-fixed supports (/� ¼ 0:4, C�=D� ¼ 2� 106, n�=m� ¼ 1� 103).
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Fig. 15. Roots of the integrabilty condition as a function of the applied pressure for various values of the thermal moment. Clamped-

fixed supports (/� ¼ 0:4, C�=D� ¼ 2� 106, n�=m� ¼ 1� 103).

Fig. 16. Applied pressure versus transverse centerspan deflection for various values of the thermal moment. Clamped-fixed supports:

(a) normal view, (b) localized view (/� ¼ 0:4, C�=D� ¼ 2� 106, n�=m� ¼ 1� 103).
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(Rutgerson and Bottega, submitted for publication). It is seen, for the present case, that the critical pressure
decreases as the temperature change is increased. This follows directly from the fact that the loading pa-
rameter is the sum of the pressure and thermal moment, as defined by Eq. (12), and that it is constant at this
point (i.e., k̂k ¼ k̂kcr). The associated load-deflection curves, displayed in the form of the applied pressure
versus the transverse centerspan deflection, are presented in Fig. 16(a) and (b). Fig. 16(a) shows that the
temperature change bends the initial load path to the left, indicating that the structure initially deflects

Fig. 17. Thermal moment versus centerspan deflection for various values of applied pressure. Clamped-fixed supports (/� ¼ 0:4,

C�=D� ¼ 2� 106, n�=m� ¼ 1� 103).

Fig. 18. Roots of the integrabilty condition as a function of the applied pressure for various values of the thermal moment. Pinned-

fixed supports (/� ¼ 0:4, C�=D� ¼ 2� 106, n�=m� ¼ 1� 103).
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outward as the temperature change is increased. It also shows that the pressure associated with the limit
point is increased as the temperature change is increased. However, consideration of the localized view of
these plots, displayed in Fig. 16(b), shows the critical point ‘A’, and hence the corresponding critical
pressure for a given temperature. It is seen that buckling occurs at significantly lower values of the applied
pressure than the limit point pressure and that this effect becomes more pronounced as the temperature
change is increased. It is further seen that the ‘‘unstable well’’, and hence the ‘‘jump’’ in deflection during
buckling, becomes larger with increasing temperature change. Finally, it is seen upon consideration of both
Fig. 16(a) and (b) that where pre-limit point snap-through was indicated for vanishing temperature change,bHH ¼ 0 (Rutgerson and Bottega, submitted for publication), ‘‘sling-shot buckling’’ is indicated for non-
vanishing temperature change, bHH > 0. Thus, the effect of temperature change is to induce ‘‘sling-shot
buckling’’, rather than ‘‘pre-limit snap through’’, at lower pressures and that the instability, as charac-
terized by the jump in the transverse deflection, is rendered more severe.

A localized view of the load-deflection curves, in the form of normalized temperature change (thermal
moment) versus the normalized centerspan deflection for various values of the applied pressure, for the
identical structure are presented in Fig. 17 and demonstrate the complementary effects of pressure on
the thermally loaded structure of Section 6.2. It is seen that the critical temperature is lowered, but that
the corresponding load-deflection path is only slightly altered, by the presence of external pressure within

Fig. 19. Applied pressure versus transverse centerspan deflection for various values of the thermal moment. Pinned-fixed supports:

(a) normal view, (b) localized view (/� ¼ 0:4, C�=D� ¼ 2� 106, n�=m� ¼ 1� 103).
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the range of pressures considered. The effect is the same for temperatures outside the range shown, but the
associated deflections are beyond the range of validity for the model employed.

Parallel results for structures possessing the same material and geometric properties, but having pinned-
free supports, are presented in Figs. 18–20 and show similar behavior.

7. Concluding remarks

The behavior of multilayer shell segments has been studied for structures subjected to combinations of
uniform temperature change, applied external pressure and applied and reactive compressive circumfer-
ential edge loads. The problem was expressed in a ‘‘mixed formulation’’, in terms of the normalized
transverse (radial deflection) and a normalized membrane force parameter, and the structure is seen to be
effectively defined by a ratio of composite mechanical stiffnesses, a ratio of composite thermo-mechanical
stiffnesses and the normalized half span length. A stability criterion was established and a (transverse)
loading parameter, consisting of the thermal moment (normalized temperature change) and normalized
applied pressure, was identified. Critical parameters, consisting of a critical membrane force and critical
(transverse) loading parameter were characterized as well, and were seen to be independent, and effectively
independent, of the material properties of the system. Closed form analytical solutions of the corresponding
non-linear problem were obtained and numerical simulations, based on these solutions, were performed.

For the case of applied circumferential edge loading (clamped-free and pinned-free supports), it was seen
that the value of the transverse loading parameter governed the direction of the subsequent deflections. For
structures that were preloaded with the transverse loading parameter at its critical value, the structure was
seen to undergo effectively no subsequent transverse deflection beyond that due to the loading parameter
alone, until the corresponding membrane force achieved its critical value as well. At this point bifurcation
buckling was seen to occur, with the structure achieving large radial deflections in either direction. For
structures preloaded with the loading parameter below (above) its critical value, the structure was seen to
deflect in an outward (inward) sense from the initial deflection upon application of the circumferential edge
load, and to exhibit ‘‘asymptotic buckling’’ in the same direction, as the corresponding membrane force
approached its critical value.

Fig. 20. Thermal moment versus centerspan deflection for various values of applied pressure. Pinned-fixed supports (/� ¼ 0:4,

C�=D� ¼ 2� 106, n�=m� ¼ 1� 103).
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For structures whose edges were fixed with regard to circumferential translation (clamped-fixed or
pinned-fixed supports), critical behavior was seen to be associated with the crossing of the first two
branches of the roots of the ‘‘integrability condition’’ for the circumferential displacements, indicating two
possible equilibrium configurations at that point. The root crossing occurred when the transverse loading
parameter and the membrane force parameter simultaneously achieved their critical values. A stability
analysis showed that the equilibrium configurations associated with the first branch were stable upon
loading, but became unstable when the loading parameter achieved its critical value. The reverse was seen
for the equilibrium configurations associated with the second branch. For structures subjected to a tem-
perature change alone, the structure was seen to initially deflect in an outward sense until the critical
temperature change was achieved. At this point ‘‘sling-shot buckling’’ was seen to occur, where the
structure violently ‘‘slings’’ from an outwardly deflected configuration to an inwardly deflected configu-
ration. The structure is then seen to further deflect in an inward sense, in a stable manner, as the tem-
perature change is further increased.

Instabilities associated with structures subjected to pressure loading were seen to become more severe
when the effects of temperature change were included. Specifically, such structures were seen to exhibit pre-
limit load snap-through buckling when no temperature change was present (Rutgerson and Bottega,
submitted for publication). However, in the presence of temperature change, these same structures would
first deflect outward with increasing pressure and then exhibit ‘‘sling-shot buckling’’ (rather than classic
snap-through) when the critical pressure level was achieved. Further, the critical pressure levels at which
buckling ensues were lowered as a result of the temperature change, and the decrease in critical pressure and
the extent of buckling was seen to be continuously enhanced with increasing temperature change. Similarly,
the critical temperature at which ‘‘sling-shot buckling’’ is initiated during temperature controlled loading
was seen to be lowered by the presence of applied pressure, though the initial load-deflection path was seen
to be only slightly altered by the applied pressure.

To close, critical non-linear behavior of multilayer shell segments subjected to combinations of uniform
temperature change, external pressure and edge load has been elucidated, characterized, quantified and
explained, and characteristic behavior has been demonstrated. Such structures are seen to exhibit a variety
of interesting, and perhaps heretofore unanticipated, responses which can have significant ramifications.

Appendix A. Temperature scale

The renormalized temperature change (distributed thermal moment) is given by

bHH ¼ m�

D�
eHH; ðA:1Þ

where the material parameters m� and D� are defined in Appendix C, and the normalized temperature
change, eHH, and hence the temperature scale for the class of problems of interest, is defined by

eHH ¼ a1H ¼ a1ð �HH � �HH0Þ= �HH0: ðA:2Þ
In Eq. (A.2), �HH is the dimensional temperature and �HH0 is the associated reference temperature. In addition,
ai (i ¼ 1; 2; . . . ;C) corresponds to the normalized coefficient of thermal expansion of layer ‘i’ of a structure
comprised of C layers, where

ai ¼ �aai
�HH0ð1þ qmiÞ ði ¼ 1; 2; . . . ;CÞ; ½q ¼ 0 ðplane stressÞ; q ¼ 1 ðplane strainÞ
; ðA:3Þ

and �aai (i ¼ 1; 2; . . . ;C) is the dimensional coefficient of thermal expansion of layer ‘i’.
We further introduce the ratios

a0
i ¼ ai=a1 ði ¼ 1; 2; . . . ;CÞ: ðA:4Þ
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Appendix B. Deformation-displacement relations

The composite shell is considered as an assemblage of C individual shells (Bottega, 1994; Bottega and
Karlsson, 1999; Karlsson and Bottega, 2000a). The membrane strain, e�ðhÞ, and the normalized curvature
change, jðhÞ, at the reference surface of the composite shell are given in terms of the corresponding nor-
malized circumferential displacement, u�ðhÞ, and the normalized radial displacement, wðhÞ, by the relations

e�ðhÞ ¼ u�0ðhÞ � wðhÞ þ 1
2
w02ðhÞ; ðB:1aÞ

jðhÞ ¼ w00ðhÞ þ wðhÞ: ðB:1bÞ
The circumferential displacement at the neutral axis of the composite structure, ûuðhÞ, is related to its
counterpart at the reference surface by the relation

ûuðhÞ ¼ u�ðhÞ þ q�w0ðhÞ; ðB:2Þ
where the material parameter q� gives the location of the neutral surface of the composite structure with
respect to the reference surface and is defined by Eq. (C.2e).

Appendix C. Constitutive relations

The normalized resultant membrane force, N �, acting on the cross section of the composite structure,
and the normalized resultant bending moment, M�, acting about an axis through the reference surface of
the composite structure, are expressed in terms of the membrane strain at the reference surface, e�, the
normalized curvature change, j� (see Appendix B), and the normalized temperature change, eHH (see Ap-
pendix A), by the relations

N �ðhÞ ¼ C�e�ðhÞ þ B�j�ðhÞ � n� eHH; ðC:1aÞ

M�ðhÞ ¼ A�j�ðhÞ þ B�e�ðhÞ � l� eHH ¼ D�j�ðhÞ þ q�N �ðhÞ � m� eHH: ðC:1bÞ
The normalized composite stiffnesses appearing in Eqs. (C.1a) and (C.1b) are related to the normalized

membrane and bending stiffnesses of layer ‘i’, Ci and Di respectively, and the ratio of normalized coefficients
of thermal expansion, a0

i , by

A� ¼
XC

i¼1

½Di þ q2
i Ci
; B� ¼

XC

i¼1

qiCi; C� ¼
XC

i¼1

Ci; ðC:2a–cÞ

D� ¼ A� � q�B�; ðC:2dÞ

q� ¼ B�=C�; ðC:2eÞ

n� ¼
XC

i¼1

a0
i Ci; l� ¼

XC

i¼1

a0
i qiCi; m� ¼ l� � q�n�; ðC:3a–cÞ

where a0
i is defined by Eq. (A.4), and the normalized stiffnesses of the individual layers are defined below. In

addition, the radial coordinate qi (positive outward) locates the centroid of layer ‘i’ with respect to the
reference surface.

The mechanical stiffnesses of the individual layers are normalized with respect to the bending stiffness of
layer 1, and the dimensional radius of the undeformed reference surface. The explicit forms are given by

C1 ¼ 12=h21; D1 ¼ 1; ðC:4a; bÞ
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Ci ¼ C1E0
i ti; Di ¼ E0

i t
3
i ði ¼ 2; . . . ;CÞ; ðC:4c; dÞ

where

ti ¼ hi=h1; E0
i ¼ Ei=E1 ði ¼ 2; . . . ;CÞ; ðC:5a; bÞ

Ei ¼ Ei ðplane stressÞ or Ei ¼ Ei=ð1� m2i Þ ðplane strainÞ ði ¼ 1; 2; . . . ;CÞ: ðC:6a; bÞ

In Eq. (C.6a,b) the parameters Ei and mi respectively correspond to the (dimensional) Young’s modulus and
Poisson’s ratio for layer ‘i’.

Appendix D. Normalization of loads

The renormalized pressure, p̂p, renormalized membrane force, bNN , and renormalized edge load, bNN/, are
defined in terms of their dimensional counterparts, �pp, N

�
and N/ by

p̂p ¼ p
D� ;

bNN ¼ �N �

D� ;
bNN/ ¼ �N/

D� ; ðD:1a–cÞ

where

p ¼ �ppR
2

D1

; N � ¼ N
�
R
2

D1

; N/ ¼ N/R
2

D1

; ðD:2a–cÞ

the non-dimensional stiffness D� is defined by Eq. (C.2d), R is the dimensional radius of the reference
surface and D1 is the dimensional bending stiffness of the innermost layer.
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